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A B S T R A C T

We study renewable energy auctions in the presence of de-risking instruments using an agent-
based model. A sealed-bid, pay-as-bid scheme with several rounds of auctions is considered.
A certain fraction of the auctioned volume is guaranteed, and each bidder has then two costs,
presenting two bids depending on whether the contract will be covered by the guarantee or
not. We study the resulting dynamics, and identify a sharp phase transition depending on the
competition level of the auction. The guarantee impacts throughout the program and contributes
to a significant decrease of the final prices when the auction is competitive enough. However, in
not competitive auctions, its impact becomes negligible, and does not depend on the guaranteed
volume fraction. A novel differentiated ceiling price mechanism applied only to bids benefiting
from the guarantee is then introduced and studied. In particular, a new phase transition appears
when the auction is not competitive, showing that relatively low prices can still be obtained when
the guaranteed volume is high enough. We use the German wind on-shore auction datasets to
study the differentiated ceiling price and its impact.

JEL Classification: C53, C54, C57, C73, D44, Q21

1. Introduction
The 28th Conference of the Parties (COP28) concluded in December 2023 with a call for a just and equitable

transition away from fossil fuels, and emphasized the need to triple global renewable energy (RE) capacity by 2030,
see COP28 (2023a,b). This significant increase in RE is recognized as a critical pathway to limiting global warming to
1.5◦C, while also enabling sustainable economic development, a particularly pressing concern for developing nations
facing growing energy demands.

Renewable energies (RE) are playing a key role in meeting global energy demands. Driven by the various ecological
and socio-economic benefits of RE, alongside decreasing technological costs, see Ilas, Ralon, Rodriguez and Taylor
(2018); Wigand, Amazo, Lawson, Monteforte, Eisendrath, Gutierrez and Paz (2019)), RE sources accounted for 29%
of the world’s total electricity generation in 2020 IEA (2021). This shift is partially explained since RE is increasingly
cost-competitive with conventional fossil fuels.

Several developing countries rely on RE to meet their increasing energy demand taking advantage of their
natural resources. However, in light of the challenges of high externalities and uncertainty, governments have a
critical role in supporting investments in green technologies by providing funding and risk sharing, lowering the risk
premium and encouraging private participation (e.g., Stiglitz (1993)). De-risking green investments is particularly
crucial for developing countries, where innovative renewable energy sources face high upfront costs, see Ondraczek,
Komendantova and Patt (2015); Sweerts, Dalla Longa and van der Zwaan (2019); Taghizadeh-Hesary and Yoshino
(2020); Waissbein, Glemarec, Bayraktar and Schmidt (2013). Thus, investments from private sources remain below
its potential.
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There are different reasons explaining this, being the risks one of the most important. Investors’ perceptions of risk
and hedging mechanisms against them result in an added premium on the cost of capital in RE projects, thus leading
to high energy prices.

Risks associated with renewable energy investments can be broadly categorized into two primary categories:
financial and political risks, and geographical and technological risks. Financial and political risks encompass factors
such as changes in regulations, liquidity problems, inflation, and sovereign default. Geographical and technological
risks primarily involve a lack of infrastructure, including grid connections, transmission lines, and grid nodes, as
well as natural hazards. While infrastructure investments can address geographical and technological risks, these same
investments can be hindered by the presence of financial and political risks. De-risking instruments, such as guarantees
from public entities like governments and international financial institutions, can be implemented to mitigate the first
group of risks and attract private investors. (see Abba, Balta-Ozkan and Hart (2022); Ðukan and Kitzing (2023)).
For instance, according to Agora (2019), the cost of equity and debt in Serbia for the wind on-shore technology in
2018 was estimated as 14.5% and 4.6% respectively, whereas it was only of 5.4% and 1.6% in Germany. This large
difference is mainly due to the impact of some specific risks which, adequately addressed, can be mitigated to reduce
the cost of equity and debt to 7.9% and 2.3% (Agora (2019), pp 21-23). The impact of these risks on the Levelized
Cost of Electricity (LCOE) is significant since it was estimated to 6.7 Euro cents/kWh without de-risking and to
5.4 Euro cents/kWh after de-risking, i.e., de-risking measures lead to a reduction of nearly 20% in the cost. Let us
also mention the paper Sweerts et al. (2019) where the authors analyse the impact de-risking measures have on the
Weighted Average Cost of Capital (WACC) of several African countries and the long-term implications concerning
the penetration of renewable energies.

De-risking measures can take various forms depending on the risks to be mitigated and the characteristics of the
stakeholders, see the reports Waissbein et al. (2013); Wuester, Jungmin and Lumijarvi (2016) for a general classification
of risks and possible mitigation instruments. Let us mention as an example the case of RenovAr, the Argentine program
of RE deployment held between 2016 and 2019. In spite of a highly volatile national economy, RenovAr attracted a
large number of participants resulting in low energy prices. One of the reason of this success was the implementation
of a guarantee scheme backstopped by the World Bank to mitigate the risk of payment default of the electricity
market administrator to energy producers. We refer to the survey Menzies, Marquardt and Spieler (2019) for a detailed
presentation and analysis of RenovAr.

In renewable energy (RE) auctions, typically a government entity acts as the auctioneer and seeks to procure a
predetermined amount of RE capacity by offering to buy it from bidders. This competitive process, where bidders
compete by offering the lowest price, is becoming the most widely used mechanism to allocate various RE sources,
including solar photovoltaic, wind, geothermal, and hydro. Indeed, more than a hundred countries had used auctions at
least once by the end of 2018, see IRENA (2019), and the European Union made auctions mandatory to grant support
from member states since 2017, see Szabó, Bartek-Lesi, Dézsi, Diallo, Mezösi, Kitzing, Woodman, Fitch-Roy, del Rio,
Resch, von Blücher, Wigand, Menzies and Anatolitis (2020).

The use of RE auctions led to an overall significant decrease of the price of energy Ilas et al. (2018); IRENA (2019);
Szabó et al. (2020); Wigand et al. (2019). Indeed, a well-designed auction can foster competition amongst energy
producers thus capitalizing on technological cost reduction. Moreover, they ensure a transparent allocation process
and can be tailored to each country specific needs. Thus, RE auctions contribute to a fair and inclusive economic
growth, aligned with the COP28 agreement and the United Nations SDG7 and SDG8. On the other hand, a poorly
designed auction scheme may lead to undesired outcomes such as high prices or a low realization rate of the awarded
projects, thus jeopardizing the future deployment of renewable energy.

However, auctions are complex mechanisms to study. Firstly, because bidders compete against each others trying to
maximise their profit with only partial information about their opponents and their bidding behaviour, and also about
their own cost and future reward. Beyond the classical english or ascending auction widely used, where the auctioneer
raises the price until only one participant remains and is declared the winner, there exist multiple auction formats
specifying the bidding process, who wins, and how much the participants pay, presenting various pros and cons from
the bidders’ and the auctioneer’s point of view. Notice also that bidders behavior is very sensitive to the design of the
auction, and empirical studies of past auctions show that there is no one-fits-all design (see Del Río (2017); Szabó et al.
(2020)).

Auction theory, which has been central to the work of several Nobel laureates in Economics, is a well-developed
field (see, for example, Klemperer (2004) and Krishna (2002)). These laureates include W. Vickrey (1996), R. Myerson
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(2007), and P. Milgrom and R. Wilson (2020). Bidders are assumed to bid rationally in order to maximize their expected
utility, and the main questions are the existence of a Nash equilibrium (that is, how rational bidders are expected to
bid), and the expected revenue of the auctioneer. However, experiments show that bidders do not always behave fully
rationally, although when several rounds of an auction are held, bidders can learn from one round to another adapting
their bidding behaviour, thus possibly resulting in bidders coordinating indirectly.

RE auctions may attract a large number of heterogeneous participants ranging from large national and international
companies to small local producers. The possibly large number of participants and their heterogeneity make very
difficult, or even impossible due to combinatorial complexity, to apply the theoretical results available in the classical
game theory literature. To circumvent these difficulties, agent-based models (ABM) are being increasingly used to
study some aspects of auctions, see Anatolitis and Welisch (2017); Azadeh, Ghaderi, Nokhandan and Sheikhalishahi
(2012); Lundberg (2019); Welisch (2018). They are widely used to study complex socio-economic systems, since
their bottom-up approach is well suited to aggregate microscopic behaviour of heterogeneous agents up to their
macroscopic consequences, thus allowing to study the impact of the modelling parameters. In particular, see Castro,
Drews, Exadaktylos, Foramitti, Klein, Konc, Savin and van den Bergh (2020) about the use of ABM to model climate-
energy policies.

Using ideas from game theory and statistical physics, the authors in Saintier, Marenco, Kind and Pinasco (2023)
proposed an ABM to model RE auctions where bidders can adapt their bidding behaviour from one round to the next
in a myopic way, only reacting to their performance in the round. Numerical experiments show the resulting dynamic
mainly depends on one parameter, namely the level of competition 𝜌 of the round defined as the ratio of volume of
energy offered by bidders over the volume the auctioneer wants to buy. This parameter has a critical impact on the
prices in the sense they tend to go up when 𝜌 < 2, and to go down when 𝜌 > 2. Moreover, it was observed that bidders
coordinate in the sense they end up bidding the same price for a given volume of energy. The model parameters were
fit to reproduce with a good accuracy the results of the German solar and wind auctions, a program well studied in the
literature and a standard benchmark for RE auctions models.

These numerical findings can be explained theoretically using tools from mathematical analysis, see Kind, Pinasco
and Saintier (2023), where a system of ordinary differential equations was obtained to describe the trajectories of
the agents in the space of bids. Also, a first-order, non local, nonlinear partial differential equation describes the
behavior of this particle system, as in classical statistical mechanics. The validity of this approach, where bidders
are dummy particles reacting only to their success or failure in auctions can be theoretically justified. Recently, in
Crucianelli, Pinasco and Saintier (2024) it was proved that agents, following very simple dynamical rules, learn the
Nash equilibrium for both first price and second price auctions.

We propose to use this framework to incorporate de-risking mechanisms and study their impact on prices. This is a
non-trivial task since bidders now have two costs depending on whether de-risking instruments were applied to mitigate
risks or not. They are thus expected to bid differently if they benefit from such instruments or not, thus resulting in a
more complex dynamic. We consider a very simplified guarantee instrument, which will be modelled as a fraction of
the total auctioned volume covered against default payment of the state (in the spirit of the RenovAr program mentioned
earlier), although any other instrument impacting on the costs by reducing them can be considered in a similar way. A
complete description of the model is given in Section §2, where we describe the dynamics of the agent-based model.

Then, in Section §3 we analyze through numerical simulations the impact of the competition level of the auction,
and the fraction of auctioned volume covered by the guarantee. We observe a sharp transition at a competition level
of 2, that is, when twice the auctioned volume is offered, and a positive impact of the guarantee only in competitive
auctions. Hence, a novel policy mechanism is introduced in Section §4, namely a differentiated ceiling price applied
only to bids benefiting from the guarantee.

In Section §5 we first perform numerical experiments in this modelling framework with the German solar and wind
on-shore programs datasets to study the results that some guarantee scheme and a differentiated ceiling price would
have had on the prices had it been applied, assuming that the scheme can reduce the bidder’s costs.

We conclude the paper with some policy recommendations and possible future works.

2. Description of the agent-based model
We consider a sealed-bid, pay-as-bid auction taking place in several rounds 𝑡 = 1,… , 𝑇 involving the same 𝑁

bidders. At each round a fraction 𝐺 ∈ [0, 1] of the auctioned volume is covered by the guarantee. We suppose for
simplicity that 𝐺 is the same in all the rounds. Bidders who can benefit from the guarantee thus do not have to hedge
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against the risk of a payment default, resulting in a lower cost. Each bidder 𝑖 has then two costs 𝑐𝑖,𝑤𝑖𝑡ℎ and 𝑐𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡
such that 𝑐𝑖,𝑤𝑖𝑡ℎ < 𝑐𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 which will be used to define the bids and their profits.

A round 𝑡 of the auction is organized as follows:

Step 1: Initialization.
The auctioneer publicly announces the total auctioned volume 𝑉𝑡 and the ceiling price (or cap price) 𝐶𝑃𝑡 of the

round, namely the maximum accepted value of a bid. Denote 𝑉𝑡,𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝑑 ∶= 𝐺.𝑉𝑡 the auctioned volume covered by
the guarantee.

Step 2: Bidding process.
Each bidder 𝑖 submits two sealed bids 𝑏𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 and 𝑏𝑖,𝑤𝑖𝑡ℎ, the price at which the bidder is willing to provide a

volume 𝑣 of energy depending on if he can benefits of the guarantee scheme or not. For simplicity, bidders are all
assumed to submit the same volume 𝑣, and we suppose that the auctioned volume 𝑉𝑡 is a multiple of 𝑣. There are then
𝑁𝑤,𝑡 ∶= 𝑉𝑡∕𝑣 winners at round 𝑡.

The bids 𝑏𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 and 𝑏𝑖,𝑤𝑖𝑡ℎ are drawn at random from the normal distributions𝑁(𝜇𝑖,𝑤𝑖𝑡ℎ, 𝜎2) and𝑁(𝜇𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡, 𝜎2).
Since 𝑐𝑖,𝑤𝑖𝑡ℎ < 𝑐𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡, we enforce 𝑏𝑖,𝑤𝑖𝑡ℎ < 𝑏𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 exchanging both bids if needed. If bidder 𝑖’s bid 𝑏𝑖,𝑤𝑖𝑡ℎ is
greater than the ceiling price, i.e. 𝑏𝑖,𝑤𝑖𝑡ℎ > 𝐶𝑃𝑡, then to have an admissible bid, we put 𝑏𝑖,𝑤𝑖𝑡ℎ ∶= 𝐶𝑃𝑡. Likewise, if
𝑏𝑖,𝑤𝑖𝑡ℎ < 𝑐𝑖,𝑤𝑖𝑡ℎ, then to have a profitable bid, we put 𝑏𝑖,𝑤𝑖𝑡ℎ ∶= 𝑐𝑖,𝑤𝑖𝑡ℎ. The same truncation procedure is applied to
𝑏𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 if needed.

In case bidder’s cost 𝑐𝑖,𝑤𝑖𝑡ℎ is higher than the ceiling price, bidder can not reasonably expect a positive gain by
participating to the round and thus abandon it. If 𝑐𝑖,𝑤𝑖𝑡ℎ < 𝐶𝑃𝑡 < 𝑐𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡, bidder 𝑖 can expect a positive gain only if
he benefits of the guarantee. In that case we assume 𝑏𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 = +∞.

The mean bids 𝜇𝑖,𝑤𝑖𝑡ℎ and 𝜇𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 will change from round to round as explained in the learning step below. The
bid variance 𝜎2 is assumed to be the same for all bidders through the whole auction.

Step 3: Determination of the winners.
The auctioneer sorts the 2𝑁 bids

𝑏1,𝑤𝑖𝑡ℎ, 𝑏1,𝑤𝑖𝑡ℎ𝑜𝑢𝑡, ..., 𝑏𝑁,𝑤𝑖𝑡ℎ, 𝑏𝑁,𝑤𝑖𝑡ℎ𝑜𝑢𝑡

in ascending order. Say bidder 𝑖 submitted the lowest bid, necessarily 𝑏𝑖,𝑤𝑖𝑡ℎ. Then the volume 𝑣 is discounted from the
auctioned volume 𝑉𝑡 and the guaranteed auctioned volume 𝑉𝑡,𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝑑 = 𝐺𝑉𝑡. Both i’s bids 𝑏𝑖,𝑤𝑖𝑡ℎ and 𝑏𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 are
then eliminated from the list of ordered bids. The auctioneer then awards the lowest bid of this new list and so on. This
goes on until the guaranteed volume 𝑉𝑡,𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝑑 is exhausted. The remaining bids 𝑏𝑗,𝑤𝑖𝑡ℎ are then eliminated from the
list and the auctioneer keeps on awarding bids until covering the auctioned volume 𝑉𝑡.

Step 4: Learning.
Each bidder 𝑖 updates his parameters 𝜇𝑖,𝑤𝑖𝑡ℎ and 𝜇𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 to 𝜇′

𝑖,𝑤𝑖𝑡ℎ and 𝜇′
𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 in the following way. He first

computes the expected relative markups as

𝑟𝑚𝑖,𝑤𝑖𝑡ℎ ∶= (𝜇𝑖,𝑤𝑖𝑡ℎ − 𝑐𝑖,𝑤𝑖𝑡ℎ)+∕(𝐶𝑃𝑡 − 𝑐𝑖,𝑤𝑖𝑡ℎ)

and
𝑟𝑚𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ∶= (𝜇𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 − 𝑐𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡)+∕(𝐶𝑃𝑡 − 𝑐𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡)

which represent i’s expected profit upon winning but scaled relatively to the maximum possible profit. Here 𝑥+ =
𝑚𝑎𝑥{𝑥, 0} is the positive part of a real number 𝑥. Notice the relative markups belong to [0, 1]. Bidder 𝑖 then updates
them by adding +𝛾 to both if he won, or −𝛾 to both if he lost. Here, 𝛾 > 0 is the learning parameter, the same for every
bidders and rounds. The updated relative mark-ups 𝑟𝑚′

𝑖,𝑤𝑖𝑡ℎ, 𝑟𝑚′
𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 are truncated to remain in [0, 1]. Thus

𝑟𝑚′
𝑖,𝑤𝑖𝑡ℎ =

⎧

⎪

⎨

⎪

⎩

min{1, 𝑟𝑚𝑖,𝑤𝑖𝑡ℎ + 𝛾} if bidder 𝑖 won,

max{0, 𝑟𝑚𝑖,𝑤𝑖𝑡ℎ − 𝛾} if bidder 𝑖 lost,
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with an analogous expression for 𝑟𝑚′
𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡. Finally, bidder 𝑖 computes 𝜇′

𝑖,𝑤𝑖𝑡ℎ and 𝜇′
𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 scaling the updated relative

markups back to the interval [𝑐𝑖,𝑤𝑖𝑡ℎ, 𝐶𝑃𝑡+1] and [𝑐𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡, 𝐶𝑃𝑡+1], with 𝐶𝑃𝑡+1 the ceiling price of the next round:

𝜇′
𝑖,𝑤𝑖𝑡ℎ ∶= 𝑐𝑖,𝑤𝑖𝑡ℎ + (𝐶𝑃𝑡+1 − 𝑐𝑖,𝑤𝑖𝑡ℎ)𝑟𝑚′

𝑖,𝑤𝑖𝑡ℎ (1)

and

𝜇′
𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ∶= 𝑐𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 + (𝐶𝑃𝑡+1 − 𝑐𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡)𝑟𝑚′

𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡. (2)

This rule models a myopic behaviour in the sense that bidders lower or increase their relative markups only taking
into account how well they performed in the round, thus reinforcing good behaviour and penalizing bad ones. The
reinforcement of actions leading to good outcomes is a robust property observed in experimental psychology on both
human and animal learning, and which has been successfully used in games and economic literature, see the seminal
paper Roth and Ido (1995). This idea is by now very popular in computer science and algorithmic game theory, see
chapter 17 in Roughgarden (2016) and the classical book of Sutton Sutton and Barto (2018). It was recently applied in
the context of auctions in Crucianelli et al. (2024).

Notice that no communication among bidders is allowed during the whole auction. Bids are sealed and bidders
only know their own performance in the round, neither the awarded nor rejected bids are used in the learning process.
Thus, they are only affected by the other bidders through the result of the auction.

In the next section we study the dynamics via agent-based simulations focusing on the evolution of the winning
bids and the distribution of bidders’𝜇 parameters. In particular we will be most interested in studying the impact of the
competition level 𝜌𝑡 of round 𝑡 which can be expressed as

𝜌𝑡 =
offered volume

auctioned volume
= 𝑁𝑣

𝑉𝑡
= 𝑁

𝑁𝑤,𝑡
. (3)

To do so it will be convenient from a theoretical point of view to assume that the learning rate 𝛾 is small. Indeed, 𝛾
mainly fixes the time scale of the dynamic. Assuming it is small means that bidders are conservative changing their
behaviour smoothly. Observable effects will then only appear when 𝑇 is large. This is of course unrealistic but will
prove very useful concerning the theoretical impact of the competition level.

3. Agent-based simulations and results
In this section we present agent-based simulations of the dynamics described in the previous section. In all the

simulations we took 𝑁 = 1000 bidders. Since we are mainly interested in the bidding dynamics, we suppose for
simplicity that bidders have all the same cost 0 with guarantee and 0.3 without guarantee:

𝑐𝑖,𝑤𝑖𝑡ℎ = 0, 𝑐𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 = 0.3 𝑖 = 1,… , 𝑁.

We also suppose the ceiling price is 𝐶𝑃𝑡 = 1 for any round 𝑡.
Let us note that the interval between the minimal costs and the ceiling price can be mapped linearly to the interval

[0, 1]. In that sense, we are assuming that costs taking in account the risks of the country starts at 0.3 after the
transformation.

The updating rule (1)-(2) of bidders’𝜇 parameter then simplifies to

𝜇′
𝑖,𝑤𝑖𝑡ℎ ∶=

⎧

⎪

⎨

⎪

⎩

(𝜇𝑖,𝑤𝑖𝑡ℎ)+ + 𝛾 if bidder 𝑖 won,

(𝜇𝑖,𝑤𝑖𝑡ℎ)+ − 𝛾 if bidder 𝑖 lost.
(4)

and

𝜇′
𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0.3 +
( (𝜇𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 − 0.3)+

0.7 + 𝛾
)

.0.7

if bidder 𝑖 won,

0.3 +
( (𝜇𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 − 0.3)+

0.7 − 𝛾
)

.0.7

if bidder 𝑖 lost.

(5)
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Remember that 𝜇′
𝑖,𝑤𝑖𝑡ℎ and 𝜇′

𝑖,𝑤𝑖𝑡ℎ are implicitly truncated to remain in [0, 1].
Bidders’ initial relative mark-ups are drawn independently and uniformly at random between 0,1 and 0.5, from

which bidders initial 𝜇𝑖,𝑤𝑖𝑡ℎ and 𝜇𝑖,𝑤𝑖𝑡ℎ𝑜𝑢𝑡 parameters are then deduced. We set the learning rate to 𝛾 = 0.001.
We begin by taking 𝜎 = 0, so bidders bid exactly their 𝜇. To assess the influence of the competition level 𝜌 defined

in (3) we assume it constant throughout the auction. We show in Figures 1 the evolution from round-to-round of the
mean prices for different percentage of guaranteed volume and competition level. We can observe that the mean price
eventually stabilizes either to the ceiling price 1 when 𝜌 = 1.5, and, when 𝜌 = 2.5, to some value between 0 and 1
which decreases to 0 as the percentage of guaranteed volume goes up to 100%.

Figure 1: Final mean price for different percentage of guaranteed volume for a fixed competition level (Left: 𝜌 = 1.5, Right:
𝜌 = 2.5)

.

To better understand how the final mean price depends on the competition level 𝜌 and the percentage of guaranteed
volume 𝐺, we discretize the interval [0, 1] of 𝜌 values with a constant step size 0.01 resulting in the discretized values
𝜌𝑘 = 0.01 × 𝑘, 𝑘 = 0,… , 100. The same is done for the interval [0, 1] of 𝐺 values by considering

𝐺𝑘 = 0.01 × 𝑘,

for 𝑘 = 0,… , 100. For each pair (𝐺𝑖, 𝜌𝑗), 𝑖, 𝑗 = 0,… , 100, we run 100 simulations of the model and record the average
of the final mean price resulting in the heatmap shown in Figure 2 (Left). In the same Figure (Right) are displayed
some vertical slices of the heatmap showing the final price in function of the competition level for different percentage
of guaranteed volume.

Figure 2: Left: Heatmap of the final mean price in function of the competition level and the percentage of guaranteed
volume. Right: Final mean price in function of the competition level for different percentage of guaranteed volume
𝐺 = 0%, 25%, 50%, 75%, 100%.

Two zones with completely different behaviour of the final mean price can be observed, namely 𝜌 < 2 and 𝜌 > 2.
Indeed, when 𝜌 < 2, the final mean price is 1 (the ceiling price, after rescaling) regardless of the guaranteed volume.
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On the other hand, when 𝜌 > 2, the final mean price is independent of 𝜌 and, as the fraction of guaranteed volume goes
to 100%, decreases linearly from 0.3, bidders’ cost in absence of guarantee, down to 0, bidders’ cost with guarantee
(see Figure 2 (Right)).

This behavior can be understood by looking at the evolution of bidders 𝜇 parameters 𝜇𝑤𝑖𝑡ℎ and 𝜇𝑤𝑖𝑡ℎ𝑜𝑢𝑡 shown
in Figure 3. Indeed, we can observe that bidders coordinate in the sense that they tend to have all the same value of
the 𝜇𝑤𝑖𝑡ℎ and 𝜇𝑤𝑖𝑡ℎ𝑜𝑢𝑡 parameters (up to negligible random fluctuations). This is quite surprising since, as mentioned
before, no explicit communication between bidders is allowed in our model: the model shows that simple reinforcement
behaviours can produce implicit collusion. Then, these common values converge either both to the ceiling price 1 when
𝜌 = 1.5, or, when 𝜌 = 2.5, to the costs 0 and 0.3.

Numerical experiments varying the competition level 𝜌 and the fraction of guaranteed volume show this behaviour
holds for all values of 𝜌 < 2 or 𝜌 > 2 respectively. Since we assumed no noise on the bids, bidders’ bids are thus
eventually all equal to 1 when 𝜌 < 2 resulting a final mean price of 1 in agreement with the heatmap Figure 2. When
𝜌 > 2, bidders eventually bid their costs 0 or 0.3. Noticing there are 𝐺𝑉 ∕𝑣 and (1 −𝐺)𝑉 ∕𝑣 winners with and without
guarantee, the sum of winning bids is 0×𝐺𝑉 ∕𝑣+0.3× (1−𝐺)𝑉 ∕𝑣. Dividing by the number of winners, 𝑉 ∕𝑣, results
in a mean winning bid of 0 ×𝐺 + 0.3 × (1 −𝐺) independently of the particular value of competition level 𝜌 > 2. This
is the final mean price shown in Figure 2 (Right) when 𝜌 > 2.

Figure 3: Evolution from round to round of bidders 𝜇 parameters 𝜇𝑤𝑖𝑡ℎ (blue) and 𝜇𝑤𝑖𝑡ℎ𝑜𝑢𝑡 (green) with 80% guaranteed
volume and competition level 𝜌 = 1.5 (Left) and 𝜌 = 2.5 (Right).

Adding a noise 𝜎 on the bids does not significantly modify the qualitative behaviour observed previously when
𝜎 = 0. Indeed simulations show bidders still coordinate sharing asymptotically the same 𝜇 value. As a consequence
the mean prices stabilize to a value which, as in the case without noise, is either close to the ceiling price or close to
the cost 0 and 0.3. As shown in Figure 4, the phase transition at 𝜌 = 2 persists in the presence of the noise, and when
𝜌 > 2, the final mean price still linearly decreases from 0.3 to 0 as the percentage of guaranteed volume grows from 0
to 100%. However, when 𝜌 < 2, the noise gives some room to the guarantee to impact and produce a slight decrease
of the prices. Notice that the more intense the noise, the more significant the impact of the guarantee.

In conclusion, the above numerical experiments suggest the sharp transition at 𝜌 = 2 already observed in Saintier
et al. (2023) in absence of guarantee scheme persists in the presence of a guarantee independently of the intensity
of the noise on the bids. When the auction is not competitive enough (𝜌 < 2), the guarantee impacts but only while
bidders are not completely coordinated, and has almost no effect on the final prices which is close to the ceiling price
regardless of the amount of guarantee. On the other side, when the auction is competitive (𝜌 > 2), the guarantee allows
to reduce final prices down to bidders costs. This confirms the critical role of the competition level in the success of a
tender previously observed Kind et al. (2023).

4. Differentiated ceiling price
According to the simulations shown in the previous section (see Figure 2), when the auction is not competitive

(i.e., when the level of competition 𝜌 is less than 2), the guarantee scheme cannot prevent prices from going up to the
ceiling price. Bidders winning with the guarantee thus get the highest possible price while at the same time benefitting
from the cost reduction resulting from the guarantee. The cost of the guarantee borne by the auctioneer is thus not
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Figure 4: Final mean price in function of the competition level for different percentage of guaranteed volume 𝐺 =
0, 25%, 50%, 75%, 100% when bids are drawn at random from a normal with standard deviation 𝜎 = 0.1 (Left) and 𝜎 = 0.2
(Right).

followed by a reduction in energy prices. It seems thus reasonable from the auctioneer’s point of view to introduce a
second ceiling price specific for the bids under the guarantee scheme, obviously lower than the original ceiling price
which applies now only to the bids without guarantee.

Up to the authors knowledge, a differentiated ceiling price has never been implemented in real auctions nor has
it been considered theoretically. We propose to study such mechanism in the framework of our model. To do so we
simulate our model with the same parameters as in the previous section keeping the original ceiling price to 1 and
introducing a ceiling price of 0.9 for the bids under the guarantee. The dependency of the final mean price with respect
to the competition level and the fraction of guaranteed volume is shown in Figure 5 (Left).

Figure 5: Left: Final mean price in function of the competition level and the percentage of guaranteed volume when there
are two ceiling price 0.9 and 1 for bids with and without guarantee. Right: Zoom in the region {𝜌 < 2}.

Comparing with the heatmap in Figure 2 (Left) with the same ceiling price for all the bids, we first observe that the
behaviour of the final price is identical when the level of competition is greater than 2 (upper half of the plot), namely
prices decrease linearly with 𝐺 from 0.3 to 0 independently of 𝜌. However, when the level of competition is less than
2 (lower half of the plot), we can observe a strong difference between the two heatmaps. Indeed with a differentiated
ceiling price, the final price is not equal to 1 whatever the amount of guarantee but instead it varies abruptly along the
diagonal line 𝜌 = 2−𝐺. To better appreciate this transition, a zoom of the region {𝜌 < 2} is shown in Figure 5 (Right)
where the red line is 𝜌 = 2 − 𝐺. The second ceiling price thus allows now the guarantee to impact on the prices but
only when it is high enough with respect to the level of competition, more precisely only when 𝐺 > 2 − 𝜌.

The origin of the transition along the line 𝜌 = 2−𝐺 can be explained as follows. First, numerical experiments show
that as before bidders coordinate tending to share the same 𝜇𝑤𝑖𝑡ℎ and 𝜇𝑤𝑖𝑡ℎ𝑜𝑢𝑡 parameters with 𝜇𝑤𝑖𝑡ℎ < 𝜇𝑤𝑖𝑡ℎ𝑜𝑢𝑡. Since
𝜌 < 2, 𝜇𝑤𝑖𝑡ℎ is then equal to the ceiling price for the bids with guarantee, denoted 𝑐𝑝𝑤𝑖𝑡ℎ. Being the cheapest, these
bids are adjudicated first until covering the guaranteed volume 𝐺𝑉 . It thus remains to adjudicate the volume 𝑉 −𝐺𝑉
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among the remaining offered volume 𝜌𝑉 − 𝐺𝑉 . Thus it is as if the bids without guarantee were participating to an
auction with the competition level 𝜌∗ = (𝜌𝑉 −𝐺𝑉 )∕(𝑉 −𝐺𝑉 ), i.e., 𝜌∗ = (𝜌−𝐺)∕(1 −𝐺). Prices then go up or down
depending on whether 𝜌∗ < 2 or 𝜌∗ > 2. Rewriting 𝜌∗ > 2 as 𝐺 > 2 − 𝜌 gives the result.

Moreover when 𝜌∗ < 2, i.e., 𝜌 < 2 − 𝐺 (below the red line), this secondary auction is not competitive so that the
final bid without guarantee is the ceiling price without guarantee, denoted 𝑐𝑝𝑤𝑖𝑡ℎ𝑜𝑢𝑡. Recalling that bidders offer all
the same volume 𝑣, there are then 𝐺𝑉 ∕𝑣 winners with guarantee and (𝑉 −𝐺𝑉 )∕𝑣 winners without, leading to a total
revenue of 𝑐𝑝𝑤𝑖𝑡ℎ𝐺𝑉 ∕𝑣 + 𝑐𝑝𝑤𝑖𝑡ℎ𝑜𝑢𝑡(𝑉 − 𝐺𝑉 )∕𝑣. Dividing by the total number of winners 𝑉 ∕𝑣 gives the final mean
price 𝑐𝑝𝑤𝑖𝑡ℎ𝐺 + 𝑐𝑝𝑤𝑖𝑡ℎ𝑜𝑢𝑡(1 − 𝐺), i.e., 𝑐𝑝𝑤𝑖𝑡ℎ𝑜𝑢𝑡 − 𝐺(𝑐𝑝𝑤𝑖𝑡ℎ𝑜𝑢𝑡 − 𝑐𝑝𝑤𝑖𝑡ℎ). In the numerical simulations presented here,
𝑐𝑝𝑤𝑖𝑡ℎ𝑜𝑢𝑡 = 1 and 𝑐𝑝𝑤𝑖𝑡ℎ = 0.9 yielding a final mean price 1 − 0.1𝐺. This corresponds to the price below the red line
which decreases linearly from 1 on the left to 0.9 on the right.

5. Assessing the impact of guarantee scheme in real auctions: solar and wind auctions in
Germany
In this section we consider real auctions and use our model to assess the impact on prices a guarantee scheme would

have had if it had been implemented. We focus on the datasets of the Germany RE program which is determined by
auctions since 2015, with approximately three rounds by technology per years. German RE auctions program has been
the subject of an intense research activity in the last years (see e.g. (Anatolitis and Welisch (2017); Batz Liñeiro and
Müsgens (2021); Grashof, Berkhout, Cernusko and Pfennig (2020); Kácsor (2021); Lundberg (2019); Sach, Lotz and
von Blücher (2019); Szabó et al. (2020); Welisch (2018); Welisch and Kreiss (2019))) and is a standard benchmark for
RE auctions analysis due to the large amount of data publicly available in the web-page of the German government
Federal Ministry for Economic Affairs and Climate Action. We are taking the data as a synthetic dataset of a risky
country, where the costs can be reduced by implementing some guarantee scheme.

We consider the solar PV and wind on-shore auctions which are presented and analyzed in detail in Sach et al.
(2019); Lundberg (2019). It was observed in Saintier et al. (2023) that, in absence of guarantee, the model presented
here can be fitted to reproduce the trends of the mean prices in these two programs (we refer to Saintier et al. (2023)
for a detailed description of the parameters values used). We show in Figure 6 the evolution from round to round of
the ceiling price (green dotted), the real mean prices (solid blue), the level of competition (grey background) and the
simulated price in absence of guaranteed (solid brown) using the German solar and wind on-shore auctions datasets.
Notice the solar auctions (Left) were competitive (𝜌 > 2) and accordingly prices were going down. The wind on-shore
auctions (Right) on the other hand was competitive mainly during the first three rounds where prices were going down
quickly. Then the level of competition dropped below 2 and prices started going up until sticking to the ceiling price.

To assess the possible impact a guarantee mechanism would have had on the prices, supposing for the moment the
same ceiling price applies to all the bids, we simulated our model for different percentage 𝐺 of guaranteed volume
while maintaining the parameters as in Saintier et al. (2023), bidders cost there becoming their cost without guarantee.
Bidders cost with guarantee was taken equal to their cost without guarantee minus 2 Euro cents/kWh. The results are
shown in Figure 6.

We can first notice that the guarantee impacts throughout the solar program leading to lower prices, the reduction
being higher as the percentage of guaranteed volume becomes higher. On the other hand, in the wind on-shore program,
the guarantee leads to a significant price reduction only in the first rounds, where the level of competition was greater
than 2. Its impact then becomes negligible as the prices go up to the ceiling price, regardless the fraction of guaranteed
volume.

Eventually, we assess the impact of a differentiated ceiling price on the (non-competitive) wind auction. We
consider that the real ceiling price applies to the bids without guarantee, and fix a new ceiling price on the bids under
guarantee equal to the real ceiling price minus one. The result prices are shown in the Figure 7. We can appreciate
that the presence of the second ceiling price leads to a significant price reduction whose value depends strongly on the
competition level. More precisely, in the case 𝐺 = 50%, we can observe abrupt variations when it crosses the value
1.5, which is exactly the critical value 2 − 𝐺 = 2 − 0.5 found in the previous section.

It thus seems that the conclusion drawn in the previous section in an idealized setting still hold in the context of
a real auctions, namely the guarantee significantly impacts on the prices when the auction is competitive enough, i.e.,
when the competition level is greater than 2, and a differentiated ceiling price can lead to a significant decrease of the
prices in a non competitive auctions.
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Figure 6: Evolution from round to round of the ceiling price (green dots), the competition level (grey background),
the mean prices (solid blue) and the simulated mean prices (brown) if a guarantee scheme had been implemented with
𝐺 = 0, 25%, 50%, 75%, 100% using the Germany solar (Left) and wind on-shore (Right) program dtasets.

Figure 7: Simulations with the Germany wind on-shore auction dataset with two ceiling prices for different percentage of
guaranteed volume 𝐺 = 0%, 50%, 100%.

6. Conclusion and policy recommendations
Renewable energy are one of the main path toward mitigation of climate changes while sustaining the fast economic

growth of developing countries; thus contributing significantly to the realization of the United Nations SDG-7 and
SDG-8. They are by now mainly allocated trough auctions due to their flexibility and efficiency. Designing reliable
auctions scheme in developing countries is thus crucial but also challenging in view of the possible economic, social,
political, financial instability they may present. In this context, de-risking mechanisms are crucial to lower bidders cost
and ensure affordable energy prices. The present paper aims at providing a simple and flexible modelling framework
to assess how a guarantee mechanism impacts on prices.

We proposed a simple model of procurement auction when a de-risking mechanism is implemented so as to
guarantee a given fraction of the auctioned volume against default payment. Bidders are characterized by two costs and
present two bids at each round depending on whether the volume they offer will be covered or not by the guarantee.
They adapt from a round to the next one their bidding behaviour by raising (respectively, lowering) their relative markup
by a constant increment if they won (resp., lost) the round.

Agent-based simulations in a simplified settings show that bidders coordinate, and prices undergo a sharp transition
as the level of competition is less or greater than 2. When it is greater than 2, prices decreases up to a point determined
by the fraction of guaranteed volume. When it is less than 2, prices go up to the ceiling price whatever the fraction of
guaranteed auctioned volume, though the guarantee impact as long as bidders are not fully coordinated.

It thus seems that a guarantee scheme impact prices significantly when the auction is competitive enough, i.e.,
when the level of competition is at least 2, in which case it can drive the prices to low values. However, when the
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auction is not competitive, the guarantee scheme cannot prevent prices rising up, if it cannot attract bidders prior to
the beginning of the auction program. The guarantee instrument is thus of secondary importance when compared to
the level of competition which seems to be the main driver of the price evolution.

To mitigate this effect, a novel differentiated ceiling price mechanism has been considered, namely a second ceiling
price applying only to bids benefiting from the guarantee was introduced. To the best of the authors’ knowledge,
such mechanism has never been considered before, neither in real auctions nor in theoretical works. Agent-based
simulations show the presence of a new phase transition when the auction is not competitive, which was investigated
using simulations. Moreover, this differentiated ceiling price can lead to a significant decrease of the price. When
applied to the dataset of the wind on-shore German auctions, which was mostly non-competitive, this new mechanism
has a strong impact on the prices. Guarantee scheme in conjunction with a differentiated ceiling price thus seems to be
an effective way of obtaining low prices even in a non-competitive auctions.

A guarantee mechanism coupled with a differentiated ceiling price thus seem to be an interesting way of obtaining
relatively low prices even in non-competitive auctions. Cares must be taken however in the practical implementation of
such a novel design especially regarding the ceiling price on the bids benefiting from the guarantee. To avoid negative
perception, the relative difference between the two ceiling prices should reflect the relative decrease of bidders cost
induced by the guarantee, which requires a deep analysis of how the risk mitigated by the guarantee impacts on the
cost. Otherwise, the differentiating ceiling price might undermine the positive effect the guarantee scheme has on
the auction attractiveness. Our modelling framework could be extended to incorporate a functional dependence of the
participation, and thus of the competition level 𝜌, on the fraction of volume 𝐺 covered by the guarantee. More precisely,
once defined a function 𝜌 = 𝜌(𝐺), the energy prices could be studied to obtain finer prices estimates.
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